行业知识详情

燃煤锅炉NOx排放建模及优化研究

发布时间:2021-04-27

以超临界燃煤锅炉为研究对象,应用人工神经网络对其建立NOX排放模型。该模型具有较高的准确性,仿真平均误差为1.37%,真实值与仿真值吻合度高。结合遗传算法对模型进行优化,优化后的人工神经网络性能进一步提高,仿真平均误差为0.18%,较优化前降低1.19百分点。

优化前的第9个训练样本出现最大误差4.61%,优化后降低到0.85%。校验数据样本值跨度较大,证明模型的泛化能力较强。

目前,燃煤电站污染物排放备受关注,从《火电厂大气污染物排放标准》(GB13223—2011)的出台[1],到如今提出的燃煤电站大气污染物超低排放,均规定NOX,SO2和粉尘的排放限值分别为50、35、10mg/m3(中东部地区为5mg/m3),因而燃煤电站锅炉需要更加高效低污染地运行。

国内大部分燃煤电站通过加装选择性催化还原法SCR脱硝设备控制NOX排放浓度,然而为了减少氨逃逸所带的问题,SCR脱硝效率一般设计为不高于90%[2]。因此,要达到超低排放限值,炉内燃烧优化非常重要。随着计算机领域的快速发展,人工神经网络开始逐渐应用到燃煤电站锅炉控制系统[3-5]。

电站锅炉炉内燃烧非常复杂,特别是NOX的生成机制,至今没有函数映射能够准确描述,人工神经网络在处理复杂的非线性映射问题优势明显,精确度好,泛化能力强,容错率高,是能够广泛应用的黑箱模型。应用人工神经网络则不需要考虑复杂的燃烧过程和NOX生成机制,通过可靠的数据样本作为输入和输出进行学习,保证网络的性能要求[6-7]。

部分学者在神经网络应用于锅炉燃烧优化领域已有一些研究成果。BOOTH等[8]从降低NOX排放浓度入手,建立锅炉NOX排放模型,对其运行参数进行优化,优化后的锅炉NOX排放量降低了16%,锅炉效率提高了0.3%。王斌忠等[9]在研究锅炉灰渣结渣中采用了SVM模型预测其生成。

周昊等[10][11]对某30万机组的锅炉飞灰含碳量和污染物排放建立了BP神经网络模型。董文波以某电厂锅炉为原型,应用RBF神经网络建立了锅炉主蒸汽温度监控系统,在常见PID基础上,创建了RBF网络的PID控制器。以上研究在控制优化方面有很多独到的见解,但在模型建立上较为单一,本研究在建立锅炉NOX排放神经网络模型的基础上,应用遗传算法对模型进行优化,使网络的性能大大提高。

1研究对象

本文研究对象为某发电公司660MW超临界参数变压直流锅炉,BMCR工况下主蒸汽参数为2060t/h、26.15Mpa、605℃,为一次再热、变压直流、单炉膛、固态排渣、全悬吊结构Ⅱ型锅炉。制粉系统为中速磨煤机直吹式正压冷一次风制粉系统,运行设计煤种,每炉配6台磨煤机,1台备用。采用前后墙对冲燃烧,燃烧器布置3层,每层前后墙各6只低氮旋流燃烧器。

2BP神经网络建模

BP神经网络是少有的误差信号反向传递,含有多个隐含层的前馈神经网络。外界信号通过输入层传递给中间隐含层,这是BP神经网络的核心计算处,信号在此处理完后传递至输出层,并判断是否满足输出误差,进而决定完成训练还是反馈误差继续训练。不断调整各层之间的权值和阈值,当误差范围满足要求时,网络完成训练[12-13]。

2.1模型建立

本研究的电站锅炉已经投运,炉型、燃烧方式和其他主要设备一般不会改变。在电厂经常运行的负荷和煤种下,氧量对NOX生成影响较大,因此将各个二次风门开度作为输入来反映氧量对NOX生成量的影响。5台磨煤机的给粉反映了煤粉量对NOX生成的影响,炉膛与风箱压差描述风速的影响,经研究燃尽风能够影响NOX的生成量,因此将两个燃尽风口开度也作为输入参数,总计14个输入参数,输出为NOX排放浓度。建模实验数据见表1。

表1建模实验数据

BP神经网络的sigmod传递函数要求数据区间为[0,1]或[-1,1],因此在训练之前对数据样本进行归一化处理,在输出的结果中再对输出数据进行返归一化处理。

本研究采用含有1个隐含层的3层BP神经网络结构对锅炉进行排放特性建模,其中输入层网络的神经元节点为14个,输出层节点为1个,隐含层节点16个,各层之间通过log-sigmoid函数连接,学习效率取0.8。对热态试验的每个工况取18个训练样本数据用于网络训练学习,3个校验样本数据用来测试网络的性能,当训练均方误差小于0.001时结束训练。再结合遗传算法优化网络初始权值和阈值,比较网络优化前后的性能差异。

2.2建模结果

由图1可以看出,训练真实值与神经网络仿真值比较吻合,大部分工况都能很好的模拟,仿真平均误差为1.37%,其中最大相对误差出现在训练样本9,最大相对误差为4.61%。

图 1 模型仿真

3个校验样本的相对误差分别为0.46%、0.59%、2.34%,一般省煤器出口NOX排放值大约在400mg/m3,仿真误差完全可以满足电厂运行的需要。NOX排放神经网络模型的3个校验数据相差比较大,但神经网络模型的仿真误差很小,证明神经网络模型的泛化能力很强。

3网络优化

遗传算法是基于环境抉择和生物繁衍行为中演化而成的优化方法,运用仿生技术解决实际问题,借助遗传学中的基因重组、基因变异产生适应度高的新个体,通过多代的遗传,最终得到最优结果。在锅炉NOX排放神经网络模型基础上,结合遗传算法对模型进行优化,优化后网络性能更佳。本研究以网络权值和阈值作为目标函数,初始种群数为35,交叉概率为0.4,变异概率为0.2,设置进化代数为100代,图2为适应度曲线。

图2适应度曲线

优化结果如图3所示。由图3可看出,优化后的模型精确度更高,平均仿真误差为0.18%,训练样本9的误差在优化后降低到了0.85%。3个校验样本的相对误差分别为0.39%、0.51%、0.80%,平均仿真误差为0.57%。

图3优化后的模型仿真

对BP神经网络进行线性回归分析,结果表明训练数据的线性回归分析基本准确,测试数据线性回归稍有偏差,整个网络大部分数据基本能够保持较小误差的仿真模拟,也有部分数据点分布在直线两侧,在可接受范围内。优化结果表明,遗传算法优化BP神经网络是有效的,能够提高网络的精确性,泛化能力。

表2模型性能对比

4结论

(1)对某660MW超临界锅炉的NOX排放特性建立了BP神经网络模型,模型的平均仿真误差为1.37%,校验样本平均相对误差为1.13%,证明网络精确度较高,基本可以满足电站运行需要。

(2)结合遗传算法,对所建立的BP神经网络NOX排放模型进行优化,优化后的平均仿真误差为0.18%,较优化前有所降低,校验样本的数据跨度较大,但仿真误差小,证明模型的泛化能力强。结果表明,遗传算法优化神经网络能够提高其性能。

建筑业查询服务
  • 建筑业查询服务
  • 资质介绍
  • 行业资讯
  • 企业介绍
  • 行业知识
  • 奖项介绍
在线咨询 免费试用