焊合是指压铸生产中,铸件与模具发生相互作用,起模时,铸件的一部分保留在模具表面,从而造成铸件缺肉的一种铸造缺陷。它是压铸生产中一个十分有害和棘手的问题,压铸模和铝铸件焊合的形成和扩展不仅降低铸件的表面质量和尺寸精度,而且可以引起铸件的报废,甚至导致模具的早期失效,同时,他还增加了模具的修复工时和工人的劳动强度,大大降低了劳动生产率。最近,人们对焊合现象开始重视起来,并在实验室采用一些试验方法对这一现象进行研究,使人们对焊合现象有了一定的认识。 1、焊合的理论研究现状 目前,关于焊合现象的形成机理还没有深入的研究,人们只是根据这种现象在压铸生产中产生的特定条件,提出了一些简单的假设和推测,总结出了一些影响焊合形成及扩展的因素,并针对这些因素,采取了一些措施来防止焊合的形成。 美国的E. K. Holz在第七届国际压铸年会上首次全面论述了焊合的形成原因、影响因素和防止措施[1]。根据焊合发生的部位,他将焊合分成两种类型:冲击焊合(Impingement Soldering)和沉积焊合(Deposition Soldering)。冲击焊合是由于充型时,金属液流撞击模具表面而形成,常发生于内浇口附近。而沉积焊合常发生于模具表面上金属液流流速较慢,没有冲刷的地方。L. Frommer[2]则认为焊合现象的产生是由于复杂的物理化学作用和机械作用所致。A. G. Guy在分析铸造过程中,模具与液体金属相接触而致破坏的原因时,认为模具破坏的机理不是电化学作用,而是包含了以下三个过程:模具材料的溶解,金属化合物层的形成以及液态金属元素往模具中的扩散[3]。D. A. Buckley在研究金属与铁表面的粘接时发现,在研究的所有金属中,化学活性较高的铝元素对铁具有较强的粘接力[4]。英国的J. M. Birch认为金属液循环冲击模具,模具钢和铸造合金产生化学反应,在模具表面形成化学反应层,就产生了铸件粘模现象,粘模最严重的是型芯[5]。 波兰的Wladyslaw Kajoch教授研究了汽车的齿轮箱壳体与模具的焊合情况[6],他发现,在模具基体和焊合的铝合金之间形成了一系列金属间化合物Fe3Al,FeAl,Fe2Al5和FeAl3,金属间化合物层的总厚度为25μm。德国的Klein和Wust研究了GDAlSi9Cu3合金的焊合倾向性[7],他们认为铝在模具特定部位粘接的主要原因是由于铁元素从模具扩散至铸件的界面区,并与铝合金反应,形成了AlFeSi化合物,强的粘接作用是由于金属间化合物与同类项的相互作用所致。 美国的Sumanth Shankar在第19届北美国际压铸会上提出了模具与铸件间焊合的形成过程,如图1所示[8]。高速的铝熔体射向模具表面,将模具表面的氧化膜、涂料等保护膜冲刷掉(图1a),使得铝熔体与模具钢基体直接相接触(图1b),接着,模具上的铁原子溶解入铝熔体,并形成了金属间化合物层(图1c),通过原子间的相互作用,在金属间化合物层上面形成了焊合层(图1d)。