行业知识详情

恒温室房间温度PID控制研究

发布时间:2017-12-28

1 前言

随着科学技术的发展,各类精密产品的生产制造以及特种科学实验都要求具有特定的工作环境,恒温就成为了不可缺少的条件之一。目前我国常见的恒温室的恒温精度为±1℃及±0.5℃,也有±0.1℃。而一些高精度的恒温室如光学仪器厂的刻线室恒温精度已达到了±0.0056℃。但是在某些特殊的科学实验室不仅恒温精度很高,而且干扰量多如渗透风、设备散热、送风温度波动以及电热器供电电压的波动等,且某些干扰量如渗透风其最大值难于确定而没有采用相应的措施控制渗透风扰量,导致了房间温度的波动过大,结果使恒温室的恒温精度很难达到要求。如何使这些特殊的科学实验室恒温精度达到使用要求,也成为了恒温室的空调系统和控制系统设计的一个巨大的难题。

由于传统的PID控制算法,其运算简单、调整方便、鲁棒性强, 在过程控制中, 这种控制算法仍占据相当重要的地位.故目前恒温室的空调系统大部分采用PID控制。但PID控制的效果如何, 在很大程度上是取决于控制器参数的正确整定。为此, 人们提出了各种不同的参数整定方法, 如误差积分最小、固定衰减比、极点配置等方法. 这些方法主要是用经典控制理论中的一些设计方法或者依靠现场试验方法来进行PID控制器参数的计算与整定. 显然, 这就要求操作人员具有较高的理论基础和现场调试经验. 而且, 被控对象模型参数难以确定以及系统性能稳定性较差, 则需频繁地进行参数整定, 这必将影响系统的正常运行。对于这些特殊的空调房间温度的控制,由于被控对象具有较大的惯性和迟延,且受各种因素变化的影响,因此对象的传递函数具有非线性和时变特性,采用传统的PID控制难于取得较好的控制效果。

本文采用单纯形法寻优PID参数,然后采用MATLAB仿真确定渗透风干扰量的最大值,PID控制才能保证恒温室的恒温精度。

2 工程概况

恒温室建筑面积625m2, 层高2.8m,总送风量27500 m3/h, 送风温度13.5℃,房间设计温度27±0.2℃,设备散热量135KW,恒温室建筑墙体、地板采用绝热材料,渗透风来自外部房间其设计温度26±1℃。

3 恒温室空调过程建模

3.1 恒温室空调系统被控对象的数学模型

要对一个恒温室空调系统被控对象进行控制,须为其建立一个合适的数学模型。使用数学语言对实际对象进行一些必要的简化和假设:

(1)由于该恒温室建筑墙体、地板采用绝热材料,故室内外墙体和地板热量传递忽略不计。

(2)恒温室顶棚由盖板组成,存在缝隙,考虑有一定的渗透风,其他地方如门窗的渗透风忽略不计。

假如不考虑执行机构的惯性和室温调节对象的传递滞后,根据能量守恒定律,单位时间内进入对象的能量减去单位时间内由对象流出的能量等于对象内能量蓄存量的变化率。

3.2 感温元件和执行调节机构的传递函数

感温元件采用热电阻,根据热平衡原理,其热量平衡方程式:

(14)

式中:C2——热电阻的热容(KJ/℃);

θ2——热电阻温度(℃);

q2——单位时间内空气传给热电阻的热量(KJ/h);

α2——室内空气与热电阻表面之间的换热系数(KJ/m2·h·℃);

F2——热电阻的表面积(m2);

θ1——室内空气温度,回风温度(℃)。

由式(14)拉普拉斯变换,可得感温元件的传递函数:

(15)

同样执行调节机构的传递函数:

(16)

3.3 恒温室特性参数及其他参数的确定

恒温室特性即房间的特性,用传递滞后τ、时间常数T1和放大系数K1这三个参数来表示。

(1)时间常数T1和放大系数K1

由式[5] (13) ,η=4[5], GI= GS×3%,通过式(5),式(6)计算可以得到,T1=18分,K1=0.971。

(2)传递滞后τ

由经验公式[5]τ/ T1 =0.075(15),通过计算则得τ=1.35分

(3)由参考文献[5]的附表6-1,可以得到感温元件的时间常数和不灵敏区为T3=50秒,2ε=0.05℃。

电加热器的比例系数K2=△θ/△N=0.00009, T2=50秒。

4 单纯形法寻优方法

控制系统参数最优化是指对被控对象已知、控制器的结构和形式已确定,需要调整或寻找控制系统的某些参数使整个控制系统在某一性能指标下最佳。

单纯形法的思想很简单, 若要求一个函数的最大点(或最小点) , 则可先计算若干点处的函数值, 进行比较, 并根据它们的大小关系确定函数的变化趋势作为搜索的参考方向, 然后按参考方向搜索直到找到最小值(或最大值) 为止。

这四个点X0 、X1 、 X2、 X3 对应的函数值为F0、F1、F2、F3 ,比较可看出最大者(设F3 最大) ,则对应点X3 (记为XH) 作为差点,由此可以推测好点在差点XH的对称点X R 处的可能性最大,然后计算XR 处的函数值FR , 若有FR≥ max{F0,F1,F2} , 说明从XH前进的步长太大, XR并不一定比XH好, 因此可以压缩步长在XH与XR之间找一点XS为新点,然后X0,F1,F2中最大者说明情况有所改善, 但前进和步长可能还不够,还可以加大步长得XH与XR延长线上的一点XE ,若XE对应的函数FE小于FR 则以XE 作为新点,并以X0、X1 、 X2 构成新的单纯形。最后比较构成新的单纯形的各点处的函数值, 若其中最大者和最小者之间的相对差小于预先给定的数E , 则说明最小值已经找到, 否则继续重复上述步骤直到找到止。

建筑业查询服务
  • 建筑业查询服务
  • 资质介绍
  • 行业资讯
  • 企业介绍
  • 行业知识
  • 奖项介绍
在线咨询 免费试用