行业知识详情

低温磁制冷技术的应用与发展

发布时间:2018-05-08

低温磁制冷技术的应用与发展具体内容是什么,下面鲁班乐标为大家解答。

臭氧层是指距地球表面10至50公里的大气层中由臭氧构成的气层。臭氧是一种气体,其分子结构为三个氧原子,即O3。臭氧层的主要功能在于吸收来自宇宙的紫外线,使地球上的万物免受紫外线辐射的危害,所以,臭氧层被称之为地球的保护伞。但如今,臭氧层已被人类严重破坏,本世纪开始人类大量使用高度稳定的合成化合物,如空调器、冰箱工业、溶剂、航空航天用制冷剂、喷雾剂、清洗剂中含氯氟烃化合的挥发出来,通过复杂的物理化学过程与臭氧发生化学反应而将其摧毁。

为了防止生产和使用氟氯碳类化合物造成的大气臭氧层的破坏,到2000年全世界将限制和禁止使用氟里昂制冷剂,我国于1991年6月加入这个国际公约并做出规定,到2010年我国将禁止生产和使用氟里昂等氯氟烃和氢氯氟烃类化合物。

因此,需要加快研究开发无害的新型制冷剂或不使用氟里昂制冷剂的其它类型制冷技术。

本世纪二十年代末,科学家发现了磁性物质在磁场作用下温度升高的现象,即磁热效应。随后许多科学家和工程师对具有磁热效应的材料、磁制冷技术及装置进行了大量的研究开发工作。

磁制冷原理及特点

⑴磁制冷就是利用磁热效应,又称磁卡效应(Magneto-CaloricEffect,MCE)的制冷。磁热效应是指磁制冷工质在等温磁化时向外界放出热量,而绝热去磁时温度降低,从外界吸收热量的现象。

例如对于铁磁性材料来说,磁热效应在它的居里温度(磁有序-无序转变的温度)附近最为显著,当作用有外磁场时,该材料的磁熵值降低并放出热量;反之,当去除外磁场时,材料的磁熵值升高并吸收热量,这和气体的压缩-膨胀过程中所引起的放热-吸热的现象相似。

⑵磁制冷是一项绿色环保的制冷技术。与传统制冷相比,磁制冷是采用磁性物质作为制冷工质,对大气臭氧层无破坏作用,无室温效应,单位制冷率高,能耗、运动部件少,因此机械振动及噪声小,工作频率低,可靠性高。在热效率方面,磁制冷可以达到卡诺循环的30%~60%,而依靠气体压缩-膨胀的制冷循环一般只能达到5%~10%。磁制冷应用范围广泛,从μK、mK及到室温以上均适用。在低温领域,磁制冷技术在制取液氮、液氦、尤其是绿色能源液氢方面有较好的应用前景;在高温特别是近室温领域,磁制冷在冰箱、空调及超市食品冷冻系统方面有广阔的应用前景。

磁制冷的应用

目前,磁制冷主要应用在极地温和液化氦等小规模的装置中。虽然诸多原因的限制使磁制冷基础理论尚未成熟,但磁制冷终将因其高效、无污染等特点成为未来颇具潜力的一种新的制冷方式,而对磁制冷循环理论的拓深必能大力推进磁制冷技术在太空开发和民用技术中的应用,为磁制冷开辟更加广阔的前景。

磁制冷的历史与发展

早在1881年,E.Warburg就在铁中发现了磁热效应。后来,1907年P.Langevin也注意到了恒磁体绝热去磁过程中,其温度会降低。1926年Debye和Giauque都预言了可以用磁热效应制冷。随后Giauque和MacDougall于1933年用Gd2(SO4)3.8H2O作为介质进行了绝热退磁的首次试验,达到了0.53~0.1K超低温。从此,在超低温范围内,磁制冷发挥了很大的作用,一直到现在这种超低温磁制冷技术已经很成熟。

随着磁制冷技术的迅速发展,其研究工作也逐步从低温向高温发展。1976年,美国NASALewis和G.V.Brown首先采用金属Gd为磁制冷介质,采用Stiring循环,在7T磁场下进行了室温磁制冷试验,开创了室温磁制冷的新纪元。美国LosAlamos实验室的W.A.Steyert等[4]设计了一个回转式的磁制冷装置,采用Brayton循环,当高低磁场差为1.2T、冷热端温差为7K时获得了500W的制冷功率。1996年12月宇航公司的工程师CarlZimm[5]研制的室温磁制冷样机取得了突破性进展。他们采用3kg稀上金属作为磁工质,以水(加防冻剂)作为传热介质,以NbTi超导磁体产生磁化场,建立了一套室温的磁制冷样机(原理机)系统。该机设计较为完美,在磁制冷循环过程中能量损失很小,制冷效率很高(实际效率可达卡诺循环的30%)。

但是由于磁制冷技术尚处在不断完善的过程中,还有很多问题需要解决,主要有:

⑴每次磁制冷循环所产生的温差还不够大,目前还只有1~3K,这主要是由于磁场不够强,也就是说磁性材料的磁熵还不够大。

⑵磁制冷过程中的热交换速度不够快,从而使磁制冷周期延长,也使整个循环的热效率下降。

⑶在室温条件下,若不利用超导技术,仍利用电磁铁或稀土永磁材料产生磁场,则在两磁极面总存在空气隙,因此进入磁场的磁制冷材料有限,这就应有绝热效果好的隔热层,这也是一个技术难题。

所以在今后磁制冷技术发展中应在以下几个方面有所突破和创新:

⑴磁场分析,磁体结构的设计应更完善和合理;

⑵针对相应的温区选择换热介质,设计出最佳的热开关或换热回路,提高换热效率;

⑶磁制冷材料的研制,通过改进工艺和材料重组制备性能更优越的材料。

可以预见在不久的将来,磁制冷技术会以其自身的许多优势迅速发展起来,被广泛应用于各个行业。

建筑业查询服务
  • 建筑业查询服务
  • 资质介绍
  • 行业资讯
  • 企业介绍
  • 行业知识
  • 奖项介绍
在线咨询 免费试用